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A computer-based method was developed for rapid and automatic identification of potential
“frequent hitters”. These compounds show up as hits in many different biological assays covering
a wide range of targets. A scoring scheme was elaborated from substructure analysis,
multivariate linear and nonlinear statistical methods applied to several sets of one and two-
dimensional molecular descriptors. The final model is based on a three-layered neural network,
yielding a predictive Matthews correlation coefficient of 0.81. This system was able to correctly
classify 90% of the test set molecules in a 10-times cross-validation study. The method was
applied to database filtering, yielding between 8% (compilation of trade drugs) and 35%
(Available Chemicals Directory) potential frequent hitters. This filter will be a valuable tool
for the prioritization of compounds from large databases, for compound purchase and biological
testing, and for building new virtual libraries.

Introduction

In conjunction with high-throughput screening tech-
nology, the virtual screening concept provides an entry
point for accelerating hit finding and lead structure
generation.1 Virtual screening and filtering methods are
now routinely utilized during the early phases of the
drug design and discovery process. Nevertheless, the
selection of any promising molecules critically depends
on the quality of the available screening libraries. On
the basis of expert knowledge, several filters have
already been developed to improve the quality of these
compound libraries.2-4 The aim of such filtering systems
is to remove undesired compounds as early as possible
during the drug discovery process in order to maximize
the likelihood for a lead reaching clinical trials. Crude
filters to remove compounds with chemically reactive5

or toxic chemical groups6 have been used for a while.
Over the past few years, additional filters focusing on
more subtle properties have been developed, where the
classification of “drugs” and “nondrugs” is a recurring
theme.7-10 Oral bioavailability,11 aqueous solubility,12

and metabolic clearance13 have also been the subject of
intense research for implementation of new virtual
screening routines. In this work, we have tried to
rationalize another piece of medicinal chemists’ knowl-
edge: the recognition of “frequent hitters”. These com-

pounds show up as hits in many different biological
assays covering a wide range of targets, which can
happen for two main reasons: (i) the activity of the
compound is not specific for the target (“promiscuous
compounds”); (ii) the compound perturbs the assay or
detection method, e.g., colored or fluorescent molecules.
In both cases, such molecules are usually poor starting
points for lead optimization programs and can cause an
expenditure of money and loss of time without any
benefits. Sometimes medicinal chemists are able to
identify frequent hitters by obvious undesired structural
features or properties. Rationalizing these characteris-
tics and automating the frequent hitter identification
process can increase efficiency and thus assist in the
selection of promising hit or lead candidates.

The first fundamental step of our analysis was to
compile a reliable data set. One possible approach is to
follow the “likeness concept” requiring sets of both
frequent hitters and “nonfrequent hitters”.2-4 In the
second step, specific molecular features had to be
determined, which are suited to discriminate between
the two classes of compounds. Substructure analysis in
combination with multivariate statistical analysis of
molecular descriptors represents a practical approach
to this task. In the third step, a predictive scheme was
elaborated. For this purpose we explored a wide range
of molecular descriptors and various prediction tech-
niques. Finally, we employed our new virtual screening
tool to identify potential frequent hitters in several
compound databases: the Available Chemicals Direc-
tory (ACD),14 the World Drug Index (WDI),15 and the
MedChem Database.16
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Materials and Methods

Data Compilation. A diverse collection of data is needed
to establish a scoring scheme for the classification of frequent
hitters and nonfrequent hitters. In the ideal case, these data
accurately represent the distributions of the two classes of
molecules in a chemical space. The compilation of such a
database is a time-consuming process because all the assay
results from various drug discovery projects must be reviewed
and the consistency of the data must be evaluated. The origin
of our frequent hitter data is diverse. First, a raw collection
of 2408 nonredundant molecules was compiled from different
sources. A major subset (930 compounds) was compiled by
retrieving the best 1000 hits for 161 different high-throughput
screening assays performed at Roche, where 930 of them
showed up in at least eight different assays. The cutoff of eight
represents a relatively conservative threshold. The second
major subset (1389 compounds) stemmed from our in-house
depository, containing compounds that had been requested by
at least six different drug discovery projects. Additional
compounds were contributed by all Roche research sites,
stemming from various medicinal chemistry projects. To refine
this raw data collection, a panel of 11 independent teams of
medicinal chemists from all major Roche research centers was
asked to identify structures in the list that may be “frequent
hitters” based on their intuition and expert knowledge. This
was also done to exclude molecules that may be false-
annotated in the database or show up in various assays
because of degradation or impurity. The votes are thus based
on these chemists’ expertise. A compound was defined as a
frequent hitter if it obtained at least 9 out of 11 possible votes
(>80% agreement). This procedure resulted in a set of 479
structures defined as frequent hitter compounds. A diverse set
of 423 drugs extracted from the Roche human drug database
was used as a reference for nonfrequent hitter molecules. This
set has been chosen assuming that it is unlikely for a
commercial drug to be a frequent hitter. The number of 423
nonfrequent hitters is given by the fact that the set of >700
drugs in the Roche human drug database contains 423 drugs
that represent all therapeutic areas without over-representing
individual targets or disease areas. The final data set con-
tained 902 structures (479 frequent hitters and 423 nonfre-
quent hitters).

Substructure Analysis. Unique substructures describing
frequent hitters and nonfrequent hitters were identified by
using the commercially available software tool LeadScope
(release 2RC1).17 LeadScope describes compounds in terms of
approximately 27 000 predefined structural features and
displays their distribution by separate histograms for the
frequent hitters and the nonfrequent hitters. Structural ele-
ments that seem to be unique for the data sets were selected
manually from the program output.

Descriptor Generation. In total 345 molecular one- and
two-dimensional descriptors were calculated for each molecule.
A total of 74 general properties, molecular indices, and
attributes were generated by the program TSAR 3.21.18 For
prediction of the octanol/water partition coefficient (log Pc), the
routine of Meylan and Howard was applied.19 In addition, 120
atom types were calculated following the definition of Ghose
and Crippen (GC descriptors).20 And finally, 150 topological
atom-pair descriptors were generated with the program CATS.21

Different combinations of these descriptors were analyzed to
determine their relevance and usefulness in the context of this
work.

Statistical Methods. Linear and nonlinear multivariate
analysis was applied to find the most predictive molecular
descriptors and to form a frequent hitter prediction model. In
the first step projection techniques were used to extract
relevant molecular features; in the second step classification
models were developed on the basis of these features.

1. Linear Methods. Principal component analysis (PCA)
was performed to extract a small set of orthogonal factors
describing the data distribution. It helps to understand pos-
sible relationships between distributions of compounds, which
facilitates the identification of outliers and data clusters.22,23

After this step, the partial least squares (or “projection to
latent structures”) (PLS) method (a multivariate linear regres-
sion technique) was used to elaborate a prediction scheme.23,24

Several different sets of descriptors were tested. Both PCA and
PLS studies were performed with the default options available
in the SIMCA-P 8.0 software.25

2. Nonlinear Methods. To see whether a nonlinear projec-
tion reveals separate clusters of frequent hitters and nonfre-
quent hitter molecules, a self-organizing map (SOM) analysis
of the high-dimensional descriptor space was performed. The
SOM technique can be used to generate a topology-preserving
nonlinear mapping of a high-dimensional space to a low-
dimensional space.26 The SOM served the purpose of visual-
izing data distributions in descriptor space. It complements
the linear PCA projections.

Three-layered supervised neural network systems were used
to find a classifier separating frequent hitters from nonfre-
quent hitters. Their architecture contained an input layer (fan-
out units), one hidden layer (sigmoidal units), and a single
sigmoidal output unit. The neural networks were trained using
an evolutionary algorithm implementing adaptive step-size
control, as detailed elsewhere.27 The mean square error (mse)
was the objective function that had to be minimized during
network training. The number of optimization cycles (genera-
tions) was 100 per network, and the population size per
generation was 500. In different training runs, the number of
hidden layer units was systematically varied to find an
appropriate setting. The desired output value (target value)
of the neural network was 1 for frequent hitters and 0 for
nonfrequent hitters. A 10-times cross validation was performed
with random 80% (training) + 20% (test) splits of the data.
For further validation, the dataset was randomly divided into
three parts: a training set (60%), a testing set (20%), and a
validation set (20%). We used the two first sets as in the 80%
+ 20% split for cross validation, and the last set served as an
additional independent test set. Both the SOM and the neural
networks were implemented by us using the C programming
language.28 The standard Matthews correlation coefficient for
binary data, cc, was used to estimate reclassification (training
data) and classification (test data) ability of the neural
networks.29 It is defined as

where P, N, O, and U are the number of true positive, true
negative, false positive, and false negative predictions, respec-
tively. A perfect prediction gives a correlation coefficient of 1.
Neural network output values were converted to binary
numbers using a threshold of 0.5. To reduce the “overlearning”
(or “overtraining”) effect during neural network training, the
process was terminated when cc reached an optimum for the
test set (forced stop). In addition, the least complex network
was selected for the final prediction model, i.e., the one
containing the smallest number of hidden neurons, leading to
high-prediction accuracy. Further details about neural network
theory and development can be found elsewhere.30

Preparation of Databases. The prediction model was
applied to five databases: ACD,14 WDI,15 MedChem,16 Trade
Drugs, and a set of therapeutic drugs from the Roche human
drug database. The Trade Drugs data set is composed of
molecules from the WDI database that have an available trade
name. Many of the therapeutic drugs from the Roche collection
are also listed in a compilation by Dollery.31 The following
three-step procedure was applied to harmonize the data sets:

1. Remove all redundancies within each database.
2. Remove all counterions.
3. Remove the compounds for which the GC descriptor

calculations fail.
We obtained, respectively, 183 221, 55 750, 36 418, 3344,

and 703 compounds from ACD, WDI, MedChem, Trade Drugs,
and the Roche human drug database (“therapeutic drugs”).

cc ) NP - OU

x(N + O)(N + U)(P + O)(P + U)
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Results and Discussion
Several classification, feature extraction, and model-

ing methods were used to establish a computer-based
prediction tool detecting frequent hitter molecules.
These investigations were based on a set of 479 frequent
hitters and 423 nonfrequent hitters.

Substructure Analysis. The software tool Lead-
Scope was used to identify substructure elements that
allow for a straightforward discrimination between
frequent hitters and nonfrequent hitters. Several sub-
structures were found to be more abundant in the
frequent hitter set than among the nonfrequent hit-
ters: benzene, 1-alkylamino, 4-heteroiminomethyl (0/
30); imine, N-heteroaryl- (0/35); hydrazone, phenyl (2/
45); amine, dimethyl, aryl (2/32); benzene, 1,2-dihydroxy
(10/67). Numbers in parentheses give their numbers of
occurrence in the nonfrequent hitter set and the fre-
quent hitter set, respectively. We have not found a
single meaningful substructure that is common to all
frequent hitters. None of these structures alone or in
combination are sufficient to unambiguously define a
frequent hitter compound. This observation suggests
that there seems to be no obvious relationship between
the presence of a single particular substructure in a
compound and its potential to be a frequent hitter. The
underlying structure-activity relationship seems to be
more complicated, such as a combination of different
features of the molecule. A more extensive analysis
based on additional molecular descriptors was therefore
required.

Self-Organizing Map (SOM) Assessment of Mo-
lecular Descriptors. We followed the SOM approach
to evaluate the usefulness of different sets of molecular
descriptors. A two-dimensional SOM projection of our
high-dimensional data will display clusters of data if
the molecular descriptors are appropriate for the clas-
sification task given. Several SOMs were developed
using different descriptor sets: (i) all 345 descriptors,
(ii) CATS topological atom pairs, (iii) GC descriptors,
and (iv) CATS and GC descriptors together. Clear
cluster formation was observed using the GC descriptors
alone (Figure 1A). From the SOM projection we con-
cluded that the discrimination between frequent hitters
and nonfrequent hitters should be feasible using GC
descriptors. This conclusion is supported by the fact that
the binary classification ability of the SOM shown in
Figure 1B yields a Matthews correlation of cc ) 0.8 (32).
Only 11% of the frequent hitters fall into the “nonfre-

quent hitter area” (white area in Figure 1B), and 9% of
the nonfrequent hitters are found in the “frequent hitter
area” (black area in Figure 1B) of the map. This raw
classification accuracy was obtained with equal weights
on the individual descriptor contributions.

PCA and PLS Analyses. PCA was performed to
complement the SOM analysis and to identify both
strong and weak outliers among the data. The apparent
cluster formation of frequent hitters and nonfrequent
hitters revealed by SOM projection (Figure 1) is less
striking in the plane spanned by the two dominant
principal components (Figure 2). Several outliers were
found, as denoted in Figure 2. Subsequent PLS analysis
was performed to find a linear predictive model. Two
models were built from the raw data, including the
outliers found by PCA, and from the cleaned data set.
The resulting models did not show relevant differences
in the assessment of the relevant variables with or
without the outliers, suggesting that the solution found
by PLS is reliable and not critically influenced by
extreme raw data values. PLS confirms the strong
importance of the GC descriptors for classification,
which was already found by SOM projection. The most
important descriptors extracted with the variable influ-
ence on projection parameter (VIP) included in SIM-
CA-P are listed in Table 1.23 The best linear prediction
tool derived from the PLS (which is based on three
relevant latent variables) reaches a Matthews correla-
tion of cc ) 0.8 with the complete data set, using a
threshold of 0.5 for the conversion of the model output
to binary prediction classes. This value is identical to
the binary SOM classification accuracy (Figure 1B). A
total of 92% of the frequent hitters and 88% of the
nonfrequent hitter examples were correctly classified.
In the next step, artificial neural networks were devel-
oped to see whether a simple nonlinear model would
produce similar or even better results and to compare
these models to the PLS system.

Neural Network Analysis. We have trained three-
layered supervised neural networks with a single hidden
layer containing two, three, or four neurons. A total of
10 independent runs were performed to cross-validate
the predictions using test sets composed of 20% ran-
domly chosen compounds of the complete data. All
neural network models were based on the GC descrip-
tors only. The simplest network (two hidden neurons)
seems to be the best suited among the networks tested.
Figure 3 displays the evolution of the averaged mse, cc,
and learning step size during the 10 training runs
performed with this network architecture. This network
reaches an average test data Matthews correlation of
cctest ) 0.81, where 90% of frequent hitters and 91% of
the nonfrequent hitters were correctly predicted. In
Figure 4 the distribution of raw prediction scores for
the test set produced by this network is shown. Com-
pared to the linear PLS model (cctraining ) 0.8), the
nonlinear neural network system led to improved
prediction accuracy (cctraining ) 0.89, cctest ) 0.81). A
great advantage of the PLS system is that because of
its linearity, it can easily be analyzed as to which input
variables are most important. It is also possible to gain
access to the “important variables” when using neural
networks, yet some more sophisticated approach is
required.7 We have not performed such an analysis for
the present application. If one is only interested in a
crude, binary frequent hitter classifier, the neural
network approach seems to outperform the PLS model.
The binary classification ability of the neural network
system was further assessed by randomly dividing the

Figure 1. Self-organizing map (SOM) projection of the
compound distribution in a high-dimensional space spanned
by 120 GC descriptors, where 10 × 10 clusters were formed:
(A) density of frequent hitters (white, none; black, many); (B)
binary classification of chemical space; frequent hitter area
in black, nonfrequent hitter area in white. Note that the map
forms a torus.
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dataset in three parts: a training set composed of 60%
of the compounds, a testing set composed of 20%, and a
validating set composed of the last 20%. By use of these
training data for network optimization, the Matthews’
correlation was cctest ) 0.80 for both the testing and the
independent validating part. This result indicates that
the network found a stable solution that seems to be
valid not only for the training data. When both training
and test sets were used for network training, the
prediction accuracy was increased to ccvalidation ) 0.83.
The fact that the augmented training set led to an
improved neural network model suggests that the
overall size of our frequent hitter database needs to be
increased to obtain more generalizing solutions.

The neural network containing two hidden neurons
was also trained with the complete data set to establish
the final filter system. It yields a Matthews correlation
cctraining ) 0.92 with 96% of the frequent hitters correctly
reclassified and only 4% of the nonfrequent hitters
classified as frequent hitters (false positives). A clear
discrimination between the two classes of molecules can
be observed in the scores histogram (Figure 4). Although
in total approximately 90% of the data were correctly

classified by this system, we observed a small percent-
age of potentially false positives (drugs predicted to be
frequent hitters) that had to be analyzed in more detail.

Analysis of False Positives. Figure 5 shows the
structures of some of the therapeutic drugs predicted
to be frequent hitters, together with their prediction
score. For most of these drugs, the appropriate clas-
sification will depend on the context. We have to deal
with a “twilight zone” in our frequent hitter definition.
For example, if we want to target the central nervous
system, dopamine-like molecules will certainly not be
considered as frequent hitters; rather, they might be
regarded as “privileged structures”. A similar argument
can be made for the polyiodo compounds dextrotiroxina
and dextrotiroxina-sodica, which target the thyroid. One
possible way to clarify this point would be to form a new
set of frequent hitters containing only one representa-

Figure 2. Score plot of the principal component projection of the frequent hitter set (902 compounds) on the plane formed by the
two most important principal components (PC1 and PC2) derived from the GC descriptors. Frequent hitters are depicted as
white circles, nonfrequent hitters as black squares. The ellipse represents the projection of the 95% confidence region limit in the
two-dimensional score plot.

Table 1. Ten Most Relevant Descriptors According to VIP
Analysis

variablesa VIP

aromatic-OH 2.72
CdC(-X)-C 2.68
X 2.61
Csp3, having 1 X attached to next carbon 2.03
CdC(-C)dC 1.99
F-Csp3-X 1.91
Cl-Csp3-X 1.91
Cl-Csp3-not X 1.62
F-Csp3-not X 1. 62
Br-Csp3-not X 1. 62

a X represents any heteroatom (O, N, S, P, Se, halogens); d
represents double bonds.

Figure 3. Evolution of the mean square error (mse), Mat-
thews correlation (cc), and the learning step size during neural
network optimization for the training and the test data. The
values were averaged over 10 independent runs; the error bars
give standard deviations.
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tive for a class of similar receptors and to repeat the
analysis. Molecules such as tocopherol, calciferol, and
idebenone, on the other hand, can be more easily
classified as being “real” frequent hitters. Clearly, the
term “frequent hitter” (as we defined it here) is not a
synonym for “undesired structure”. The instances shown
in Figure 5 stress the assumption that there probably
is no strict definition of a frequent hitter; rather, an
appropriate classification of a molecule depends on its
target. This is why this frequent hitter filter should be
used as a new flagging routine and not as an elimination
criterion in the virtual screening cascade. It may be used
for compound prioritization, thereby complementing

existing tools such as the “druglikeness filter”, the “rule-
of-five”, toxicity flagging, etc.

Application to Database Filtering. We have used
the frequent hitter filter to get an idea of the proportion
of potential frequent hitters in different databases.
Predictions were made for ACD, WDI, MedChem, Trade
Drugs, and our in-house therapeutic drugs database. To
see whether there is a correlation with a neural network
predicting “druglikeness”, we trained a neural network
to separate “drugs” from “nondrugs”, consequently fol-
lowing the original idea of Sadowski and Kubinyi.8
Instead of the conventional back-propagation-of-errors
approach, an evolution strategy was used for network
training.8,30 We were able to confirm their results
yielding 81% overall correct predictions compared to
80%. This accuracy level was confirmed by a series of
similar experiments based on in-house sets of “drug” and
“nondrug” data (results not shown). Table 2 gives the

Figure 4. Distribution of the neural network output (predic-
tion score) values for the test data set (10-times cross-
validation result). The target values were 1 for frequent hitters
(black bars) and 0 for nonfrequent hitters (white bars).

Figure 5. Structures of 15 drug molecules classified as frequent hitters by the prediction routine.

Table 2. Fractions of “Druglike” Molecules and “Frequent
Hitters” Predicted for Several Compound Databases and
Correlation of the “Druglikeness” and “Frequent Hitter” Scores
(r2)

database compounds
frequent
hitters, %

druglike,
% r2

ACD 183221 35 26 0.08
WDI 55750 22 81 0.03
MedChem 36418 16 52 0.01
Trade Drugs 3344 13 76 0.05
therapeutic drugsa 703 8 81 0.02

a From Roche database.

Virtual Screening Method for Hitters Journal of Medicinal Chemistry, 2002, Vol. 45, No. 1 141



fractions of druglike molecules and frequent hitters
predicted by our models for each database. The largest
fraction of frequent hitters is reported for the ACD
collection (35%) containing all kinds of commercially
available chemicals. The predicted fraction of druglike
structures in ACD is only 26%. It turns out that with
an increasing druglikeness of the database, a decreasing
fraction of frequent hitters is predicted. The two com-
pilations of drug molecules (trade drugs from WDI and
therapeutic drugs) gain approximately 80% druglike-
ness and only around 10% frequent hitters. One might
assume that the druglikeness score and the frequent
hitter score are correlated. Actually, the squared cor-
relation coefficients underscore that no relationship
exists between the two scores (Table 2). This is a
surprising finding because both filter systems, the
druglikeness filter and our new frequent hitter filter,
are based on the identical set of GC descriptors provid-
ing the neural network input. The models clearly differ
in the descriptor-weighing scheme, which makes them
independent tools for analyzing distinct structural
features.

Conclusions
A fast automatic scoring scheme has been established

and parametrized for the discrimination between fre-
quent hitters and nonfrequent hitters. It succeeded in
correctly classifying approximately 90% of the com-
pounds, which is an astonishing result because our set
of frequent hitters represents a heterogeneous group
formed by compounds that perturb the assays, com-
pounds that bind nonspecifically to different targets, and
even potentially privileged structures. We also observed
that there is no strict consensus among medicinal
chemists about what structural attributes characterize
a frequent hitter molecule. Nevertheless, our analysis
revealed certain features that either qualify or dis-
qualify a compound as a frequent hitter. This new filter
can be applied to prioritize compounds from large
databases, for purchase or biological testing, and also
in the construction of new virtual libraries.
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